摘要
The construction of scintillating ceramics is of great technological importance for various fundamental applications, including medical diagnostic, security inspection, resource exploration and particle physics. The chief challenge is the facile and scalable synthesis of scintillating ceramics with the desirable combination of pore-free, reliable mechanical properties and excellent scintillating performance. Here we present a pressureless glass crystallization strategy for the construction of scintillating composite with high crystallinity. The fabricated scintillating composites are featured by small optical turbidity, excellent mechanical properties, and efficient scintillating luminescence with the scintillating light yield of 15,0 0 0 pH/MeV and about 2.46 times higher than that of the commercial BGO single crystal. Moreover, the scintillating composite derived radiation detector device is successfully elaborated. The practical application for monitoring gamma ray is demonstrated and the precision of the device is less than that of the tolerable deviation of 30%. Our results suggest an innovative approach for expanding the category of scintillating material candidates, pointing to practical application in the field of radiation detection.
-
单位南阳理工学院; 中国科学院; 浙江大学