摘要

Industrial Internet of Things (IIoT) is a technological revolution that is profoundly reshaping the visage of industry. Facing the explosively increasing number of multi-service devices, traditional industrial network technology is no longer applicable. The advent of the fifth-generation (5G) wireless networks brings unprecedented possibilities for deploying the anticipated IIoT. To address the two main issues, i.e., connection density and multi-service requirements, in 5G empowered IIoT, we consider the non-orthogonal network slicing in this work. In particular, we jointly utilize network slicing to incorporate different types of services and exploit non-orthogonal multiple access (NOMA) to enhance the connection density. We formulate the connectivity maximization problem with joint sub-carrier association and power allocation as a mixed-integer nonlinear programming (MINLP). To tackle the intractable MINLP, we first transform it into a mixed-integer linear programming (MILP) and then simplify the MILP into an integer linear programming (ILP) by developing a simple yet effective pairing guideline. In order to further reduce the computational complexity, we then propose the alternating selection best-effort pairing (AS-BEP) algorithm with low complexity to solve the ILP effectively. Our analyses are supplemented by comprehensive simulation results that illustrate the performance superiority of the proposed algorithms to the benchmark schemes.