Visual object tracking via online sparse instance learning
摘要
Sparse representation has been attracting much more attention in visual tracking. However most sparse representation based trackers only focus on how to model the target appearance and do not consider the learning of sparse representation when the training samples are imprecise, and hence may drift or fail in the challenging scene. In this paper, we present a novel online tracking algorithm. The tracker integrates the online multiple instance learning into the recent sparse representation scheme. For tracking, the integrated sparse representation combining texture, intensity and local spatial information is proposed to model the target. This representation takes both occlusion and appearance change into account. Then, an efficient online learning approach is proposed to select the most distinguishable features to separate the target from the background samples. In addition, the sparse representation is dynamically updated online with respect to the current context. Both qualitative and quantitative evaluations on challenging benchmark video sequences demonstrate that the proposed tracking algorithm performs favorably against several state-of-the-art methods.
