ScholarMate
客服热线:400-1616-289

Haloxyfop-P-methyl induces immunotoxicity and glucose metabolism disorders and affects the Nrf2/ARE pathway mediated antioxidant system in Chiromantes dehaani

Xu, Wenyue; Yang, Ying; Tian, Jiangtao; Du, Xinglin; Ye, Yucong; Liu, Zhiquan; Li, Yiming; Zhao, Yunlong*
Science Citation Index Expanded
杭州师范大学

摘要

Haloxyfop-P-methyl is used extensively in agricultural production, and its metabolites in soil have potentially toxic effects on aquatic ecosystems. In this study, we explored the toxicity of haloxyfop-P-methyl on Chiromantes dehaani. The results of the 21-day toxicity test showed that haloxyfop-P-methyl decreased the weight gain (WG), specific growth rate (SGR) and hepatosomatic index (HSI). In glucose metabolism, haloxyfop-P-methyl reduced pyruvate, lactate, lactate dehydrogenase and succinate dehydrogenase, but enhanced glucose-6-phosphate de-hydrogenase and hexokinase. Furthermore, expression of glucose metabolism-related genes was upregulated. We cloned the full-length CdG6PDH gene, which contains a 1587 bp ORF that encoded a 528 amino acid polypeptide. In antioxidant system, haloxyfop-P-methyl increased glutathione, thioredoxin reductase and thioredoxin peroxidase activities and activated the Nrf2/ARE pathway through upregulation of ERK, JNK, PKC and Nrf2. In immunity, low concentrations haloxyfop-P-methyl, or short-term exposure, upregulated the expression of immune-related genes and enhanced immune-related enzymes activity, while high concentrations or long-term exposure inhibited immune function. In summary, haloxyfop-P-methyl inhibited the growth performance, disrupted glucose metabolism, activated the antioxidant system, and led to immunotoxicity. The results deepen our understanding of the toxicity mechanism of haloxyfop-P-methyl and provide basic biological data for the comprehensive assessment of the risk of haloxyfop-P-methyl to the environment and humans.

关键词

Haloxyfop-P-methyl Growth performance Glucose metabolism Immunity Antioxidant system