ScholarMate
客服热线:400-1616-289

A Redox-Responsive, In-Situ Polymerized Polyplatinum(IV)-Coated Gold Nanorod as An Amplifier of Tumor Accumulation for Enhanced Thermo-Chemotherapy

Guo, Dongbo; Huang, Yu*; Jin, Xin*; Zhang, Chuan; Zhu, Xinyuan*
Science Citation Index Expanded
上海交通大学; y

摘要

It remains a major challenge to develop an effective therapeutic system based on gold nanorods (GNRs) for cancer therapy. Herein, we developed a redox-responsive, in-situ polymerized polyplatinum(IV)-coated gold nanorod (GNR@polyPt(IV)) with coupling of the near-infrared (NIR)-induced hyperthermal effect and redox-triggered drug release in one therapeutic platform as an amplifier of tumor accumulation through mild hyperthermia for enhanced synergistical thermo-chemotherapy. After in-situ polymerized with 2-methacryloyloxy ethyl phosphorylcholine (MPC) and Pt(IV) complex-based prodrug monomer (PPM) onto the surface of GNRs, the nanosized GNR@polyPt(IV) exhibited the advantages of high drug encapsulation efficiency, triggered drug release, and reduced side effect. As demonstrated by thermal imaging and photoacoustic imaging in vitro and in vivo, this GNR@polyPt(IV) exhibited an excellent NIR-associated hyperthermal effect and outstanding capacity of tumor accumulation. Importantly, under a mild hyperthermia process, the vascular endothelial growth factor (VEGF) and hypoxia-inducible factor-1 alpha (HIF-1 alpha) were upregulation, resulting in angiogenic vessel around the tumor. Combination with accelerated blood flow and angiogenesis by mild hyperthermia, a dramatic increase of drug accumulation in tumor could be realized after systematic administration. As a result, this amplification fashion of tumor accumulation would contribute the GNR@polyPt(IV) to inhibit tumor progression effectively. Such a facile and simple methodology for enhanced therapeutic effect based on GNRs holds great promises for cancer therapy with further development.

关键词

Mild-hyperthermia Hypoxia-amplified accumulation In situ polymerized prodrug Photoacoustic imaging Thermo-chemotherapy