摘要

With the great potential of the all-polymer solar cells for large-area wearable devices, both large-area device efficiency and mechanical flexibility are very critical but attract limited attention. In this work, from the perspective of the polymer configurations, two types of terpolymer acceptors PYTX-A and PYTX-B (X = Cl or H) are developed. The configuration difference caused by the replacement of non-conjugated units results in distinct photovoltaic performance and mechanical flexibility. Benefiting from a good match between the intrinsically slow film-forming of the active materials and the technically slow film-forming of the blade-coating process, the toluene-processed large-area (1.21 cm(2)) binary device achieves a record efficiency of 14.70%. More importantly, a new parameter of efficiency stretchability factor (ESF) is proposed for the first time to comprehensively evaluate the overall device performance. PM6:PYTCl-A and PM6:PYTCl-B yield significantly higher ESF than PM6:PY-IT. Further blending with non-conjugated polymer donor PM6-A, the best ESF of 3.12% is achieved for PM6-A:PYTCl-A, which is among the highest comprehensive performances.

  • 单位
    南昌航空大学; 南昌大学; 天津大学