摘要

The need for cancelable biometric techniques has seen a progressive rise due to the rapid deployment of biometric authentication systems. These techniques prevent compromising biometric data by generating and using their corresponding cancelable templates for user authentication. However, the non-invertible distance preserving transformation methods employed in various schemes are often vulnerable to information leakage since matching is performed in the transform domain. This paper proposed a non-invertible distance preserving scheme based on vector permutation and shift-order process. First, the dimension of feature vectors is reduced using kernelized principal component analysis before randomly permuting the extracted vector features. A shift-order process is then applied to the generated features to achieve non-invertibility and combat similarity correlation-based attacks. The generated hash codes are resilient to various security and privacy attacks such as ARM, masquerade, and brute-force preimage. Experimental evaluations conducted on eight fingerprint datasets from FVC2002, FVC2004, and FVC2006 reveal a high matching performance of the proposed method with better recognition accuracy than other existing state-of-the-art. The scheme also fulfills the revocability and unlinkability requirements of cancelable biometrics.

  • 单位
    中国科学院研究生院; 四川大学; 杭州师范大学