摘要
The long-term reversible plating/stripping of Zn anodes is one of the decisive parts inside various Zn based aqueous batteries, but originally restricted by irregular dendrite/by-products issues. Guided by the metal-coordination chemistry, a novel additive, sorbitol (SBT), is introduced into the traditional ZnSO4 electrolyte to achieve preferred (002) orientation growth with stably invertible Zn deposition, while modulate the primary solvation structure for Zn2+ through expelling some active H2O molecules to alleviate common side reactions, simultanously. The robust Zn2+-SBT compound enables a much weaker interaction with (002) than (100) and (101), inducing its slower growth and resulting in its ultimate exposure. With a lower surface energy, the primary (002) on Zn anode surface effectively impedes the occurrence of Zn dendrite and several by-products. Excellent stabilities have finally been realized in Zn-Zn symmetric cells and several kinds of full cells, elucidating its potential in future Zn based devices.
-
单位中山大学; 桂林理工大学