ScholarMate
客服热线:400-1616-289

Diffusional and Thermal Resistances of Substomatal Cavity and Its Application on Wick

Luo, Yuanqiang; Liu, Wangyu*
Science Citation Index Expanded
-

摘要

Microstructures of wicks have been widely investigated on their performances of heat and mass transfer and various structures have been attempted. As have been optimized by the nature, the microstructures inside plants may also be applied on the wick structure. In this paper, four substomatal cavity structures are chosen to investigate the influence of the structural parameters on the diffusional resistance by using Fick's first law of diffusion and the equation of mass conservation comprehensively. The result indicates that both the shape and parameters affect the diffusion, and the sphere cavity structure presents the lowest diffusional resistance because of its smoothest surface. Based on the result of the comparison, the sphere is chosen as the optimal structure of the substomatal cavity and applied on the design of the microstructure of wick. In order to analyze the performances of the substomatal cavity inspired wick structure with fractal network microchannels and sphere cavity, comparisons with the leaf vein inspired wick structure with fractal network microchannels and micro fin-pins are conducted. It is obvious to find that the substomatal cavity inspired structure is promising in the application on wick structure because of its good performances of heat and mass transfer.

关键词

2-LAYER EVAPORATOR WICK HEAT-TRANSFER PRESSURE-DROP CHAMBER MODEL PERFORMANCE CHANNELS REGIMES PIPE FLOW