摘要
The influence of Fe2O3 on the hydration kinetics of tricalcium aluminate (C3A) was studied in order to clarify the mechanism of improving hydration resistance of CaO by in-situ synthesized tricalcium aluminate. The Krstulovic-Dabic model was used to investigate the hydration processes of Fe2O3-C3A solid solution and calculate the corresponding kinetic parameters. The hydration products were analyzed by the X-ray diffraction and scanning electron microscope. The results indicated that the Krstulovic-Dabic model simulated the hydration processes of Fe2O3-C3A solid solution at different stages effectively. The hydraulic activity of Fe2O3-C3A solid solution decreased with the addition of Fe2O3. Reasonable amount of Fe2O3 addition reduced the hydration rate in the initial stage of Fe2O3-C3A solid solution hydration, while the hydration rate of Fe2O3-C3A solid solution was increased with excessive amount Fe2O3. The hydration process was controlled by multiple mechanisms due to an incomplete layer of hydration products was formed on the surface.