摘要
The salvaging of the waste disposable mask was conducted in this study through catalytic pyrolysis over corn stover derived biochar catalyst combined with the boosted generation of hydrogen and mono-aromatic hydrocarbons for the first time. In the absence of biochar, up to 53 wt% of wax was observed at 550 degrees C, whereas at the biochar/mask ratio of 2, around 41 wt% of liquid oil was produced without the formation of wax. The hydrogen content in the gas stream was about 26 vol% at 600 degrees C for non-catalytic pyrolysis, which increased to around 55 vol% at the expense of light hydrocarbons such as methane and C2-4 for the catalytic process with the biochar/ mask ratio of 3. In resulting liquid oil, the content of mono-aromatics, especially toluene, xylenes, and ethylbenzene was about 55% for catalytic runs, which was far greater than that of 38% from the non-catalytic run. Interestingly, the dyes released from mask pyrolysis could be completely captured/adsorbed by biochar, leading to a much cleaner oil. After 10 cycles of reuse at 600 degrees C without regeneration, the biochar still held a good selectivity toward hydrogen and mono-aromatic hydrocarbons. This study exemplified a readily accessible concept and pathway of 'waste against waste' targeted to upcycle waste disposable masks over biochar from biomass waste.
-
单位中国农业大学; 山东理工大学