Summary

The in situ production of H2O2 by photocatalysis have shown a sustainable strategy for water remediation, but the peroxide evolution capacity are still unsatisfactory. Herein, we ingeniously design oxygen-doped carbon black/zinc indium sulfide (O-CB/ZnIn2S4) composites for photocatalytic production and activation of H2O2 to degrade antibiotics. The rich oxygen dopants and van der walls heterojunction between O-CB and ZnIn2S4 promoted charge transfer, oxygen adsorption and reduction for peroxide generation. The optimized O-CB/ ZnIn2S4-2 composites exhibited ultrahigh H2O2 production rate (1985 & mu;mol/g/h) in pure water (pH=7) without sacrificial reagents and aeration assistance, which was 2 times, 3 times, and 12 times higher than CB/ZnIn2S4-2, ZnIn2S4 and O-CB, respectively. Additionally, O-CB/ZnIn2S4-2 composites exhibited considerable amount of OH of 30 & mu;mol/L in 60 min, which was originated from the reduction of innergenerate-H2O2 by photogenerated electrons and direct photolysis. The degradation and quenching experiments shows that the innergenerate-H2O2 contributed to the rapid degradation and deep mineralization of tetracycline antibiotics(tetracycline, oxytetra-cycline, chlortetracycline hydrochloride). Moreover, intermediates analysis and toxicity estimation further confirm the significant mineralization and toxicity decrease during the degradation of oxytetracycline by O-CB/ ZnIn2S4-2. The work provides deep insights into the crucial role of dopants and heterojunction in promoting H2O2 production and activation.

Full-Text