摘要
To address the challenges of energy storage technologies, researchers have developed organic-inorganic composite solid electrolytes (CSEs) that integrate the advantages of both inorganic solid electrolytes and polymer materials, and show excellent mechanical, safety and reliability performance, which have become one of the most prevalent electrolyte system. Nevertheless, some issues remain unresolved, including the limited ionic conductivity, the occurrence of lithium dendrites, and the instability of the solid-solid interface. In this article, we provided a summary of three key approaches to improve the performance of CSEs: (i) Surface treatment, concentration adjustment, and morphology and size tailoring of filler to increase ionic conductivity, (ii) Introducing 3D scaffolds and constructing optimal space charge layer to inhibit lithium dendrite growth, (iii) Designing multilayer composite CSEs to achieve good interface matching between CSEs and electrodes, and utilizing chemical interactions between fillers and polymer matrix to improve interface stability and affinity. At the same time, introducing additives and constructing a three-dimensional structure can reduce interface impedance and improve battery performance. This review also prospects the development trends and challenges of CSEs.
-
单位桂林理工大学