摘要
Advanced oxidation process (AOPs) can be used for the treatment of harmful algal blooms (HABs). In this study, two systems of Fe2+/sodium percarbonate (Fe2+/SPC system) and Fe2+/sodium persulfate (Fe2+/PS system) were established to explore the removal mechanism of Microcystis aeruginosa (M. aeruginosa). The results indicated that the Fe2+/SPC system catalyzed H2O2 to generate a large amount of center dot OH for oxidation by Fe2+ and formed Fe3+ to promote the flocculation of M. aeruginosa. The persulfate was activated by Fe2+ to generate SO4 center dot(-) with super-oxidizing properties, and Fe3+ was generated to realize the oxidation and flocculation of M. aeruginosa in the Fe2+/PS system. Compared with the traditional method in which the pre-oxidation and flocculation processes are carried out separately, the method in this study effectively improves the utilization rate of the flocculant and the removal effect of M. aeruginosa. The absolute value of zeta potential of Fe2+/PS system (|zeta|= 0.808 mV) was significantly lower than that of Fe2+/SPC system (|zeta|= 21.4 mV) (P < 0.05), which indicated that Fe2+/PS system was more favorable for the flocculation of M. aeruginosa cells than the Fe2+/SPC system
-
单位上海应用技术学院