ScholarMate
客服热线:400-1616-289

Adaptive output-feedback quadratic tracking control of continuous-time systems via value iteration with its application

Peng, Yunjian; Meng, Qingqing; Sun, Weijie*
Science Citation Index Expanded
-

摘要

This study is dedicated to develop an adaptive output-feedback (OPFB) tracking control scheme for continuous-time linear systems to achieve the infinite-horizon linear quadratic tracking (LQT) solution. The existence conditions of the OPFB control for LQT solution are proposed and an upper bound is found for the discount factor to assure the stability of the OPFB solution. To develop an online learning solution without knowing the system drift dynamics, a novel value iteration (VI) algorithm is presented based on the integral reinforcement learning technique which requires measured augmented system states. Moreover, a convergence analysis is proposed for the VI algorithm. Compared to the policy iteration method, the VI algorithm relaxes the initial stabilising control policy requirement. Specifically, in order to further obviate the knowledge of system states, a neural network-based adaptive observer is used during learning and it is no longer needed after the online learning algorithm converges. Effectiveness of the proposed learning scheme is illustrated through an interesting application into a single-phase grid-connected PV power inverter.

关键词

optimal control adaptive control iterative methods linear quadratic control discrete time systems learning (artificial intelligence) feedback linear systems dynamic programming continuous time systems neurocontrollers nonlinear control systems photovoltaic power systems control system synthesis closed loop systems stability observers continuous-time linear systems infinite-horizon linear quadratic tracking solution existence conditions OPFB control LQT solution