摘要

Gram-negative Citrobacter freundii with high Pd (II) reduction capacity was isolated from electroplating wastewater, and the electron transfer involved in Pd (II) bio-reduction by C. freundii JH was investigated in phosphate buffer saline solution with sodium formate as sole electron donor under anaerobic condition. FTIR spectra indicated that hydroxyl and amine groups on cell wall participated Pd (II) bio-sorption. TEM, XRD, XPS results confirmed that Pd (0) nanoparticles (NPs) could be bio-synthesized intra/extracellularly. Meanwhile, pH turnover were observed owing to the reduction of cytochrome c (c-Cyt) in bio-reduction process. EPR spectra indicated that free radicals (center dot OH) was generated from high concentration Pd (II), which would cause seriously damage to cell. Despite of the lower tolerance to Pd (II), the cells at logarithmic phase exhibited higher Pd (II) reduction capacity (72.21%) than that at stationary phase (56.21%), which might be related to the relatively stronger proton motive force (PMF) created by the substrate oxidation and the electron transfer, as evidenced by electrochemical experiments (CV, DPV, amperometric I-t curves) and protein denaturalization experiments. Additionally, c-Cyt and riboflavin were confirmed to be important participants in electron transfer. Finally, a putative synthesis mechanism of Pd (0)-NPs was deduced. This study contributed to further understanding the electron transfer in Pd (II) reduction, and provided more information for the bio-synthetic of metal nanoparticles.