ScholarMate
客服热线:400-1616-289

Identifying suicide attempts, ideation, and non-ideation in major depressive disorder from structural MRI data using deep learning

Hu, Jinlong; Huang, Yangmin; Zhang, Xiaojing; Liao, Bin*; Hou, Gangqiang*; Xu, Ziyun; Dong, Shoubin; Li, Ping
Science Citation Index Expanded
华南农业大学

摘要

The present study aims to identify suicide risks in major depressive disorders (MDD) patients from structural MRI (sMRI) data using deep learning. In this paper, we collected the sMRI data of 288 MDD patients, including 110 patients with suicide ideation (SI), 93 patients with suicide attempts (SA), and 85 patients without suicidal ideation or attempts (NS). And we developed interpretable deep neural network models to classify patients in three tasks including SA-versus-SI, SA-versus-NS, and SI-versus-NS, respectively. Furthermore, we interpreted the models by extracting the important features that contributed most to the classification, and further discussed these features or ROI/brain regions.

关键词

Major depressive disorder Suicide behavior Deep learning Structural MRI