Biomechanical and biological evaluations of novel BPA-free fibre-reinforced composites for biomedical applications

作者:Wang, Ting; Matinlinna, Jukka P.; He, Jingwei; Ahmed, Khaled E.*; Burrow, Michael F.
来源:MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2020, 117: 111309.
DOI:10.1016/j.msec.2020.111309

摘要

This aim was to assess the biomechanical and biocompatibility properties of novel glass fibre-reinforced composites (FRCs) with a fluorinated urethane dimethacrylate (FUDMA) resin. Three ratios of FUDMA/TEGDMA (30/70 wt%, 50/50 wt%, 70/30 wt%) and two ratios of control FRCs with bis-GMA/TEGDMA (50/50 wt% and 70/30 wt%) containing long silanized E-glass fibres were prepared. Despite 70 wt% bis-GMA-FRC showed a significantly higher flexural strength (p < 0.05), 50 wt% FUDMA- and bis-GMA-FRCs were not differ from each other. The greatest surface hardness and weight increase after water storage were found in 70 wt% and 30 wt% FUDMA-FRCs, respectively. No significant difference was found in water sorption and solubility among all groups. Average surface roughness was 1.80 +/- 0.05 mu m, while 70 wt% FUDMA-FRC exhibited the greatest contact angle (p > 0.05). Viabilities and ALP activities of MC3TC-E1 cells in all FUDMA-FRCs were higher than bis-GMA-FRCs after 5 days. To conclude, the novel FUDMA-FRCs are potential substitutes that exhibited superior cytocompatibility properties but comparable biomechanical properties to bis-GMA-FRCs.

  • 单位
    1