Formation of phenolic compound-loaded zein films at the air-liquid interface and their controlled release profiles: Effects of the polarity of phenolic compounds
摘要
Polyphenols are frequently utilized antioxidants in active packaging and anti-immflamotary bioactives in tissue engineering. Herein, we introduced a novel method for the rapid (<5 s) fabrication of interfacial self-assembled zein films (ZF) at the air-water interface. Polyphenols with different partition coeffient (Log P), namely, cur-cumin, resveratrol, and quercetin, were simultaneously loaded during the laterally occurred self-assembly pro-cess of zein molecules, respectively. Efficient loading and smart regulation over the physical distribution, intramolecule interaction and release profile in ZF were achieved. The main zein-polyphenol interactions exhibited hydrogen bonding and hydrophobic interactions that modulated the surface micromorphology of ZF and the release kinetics of different polyphenols. The log P of polyphenols affected the strength of the interaction of zein molecules, which in turn influenced the sustained release properties of polyphenols. This "bottom-up" strategy offers a novel way to rapidly incorporate and delicate control over the release of polyphenols.
