摘要
Graph signal processing refers to dealing with irregularly structured data. Compared with traditional signal processing, it can preserve the complex interactions within irregular data. In this work, we devise a robust algorithm to recover band-limited graph signals in the presence of impulsive noise. First, the observed data vector is recast, such that the noise component is divided into two vectors, representing the dense-noise component and sparse outliers, respectively. We then exploit l(0)-norm to characterize the sparse vector as a regularization term. Alternating minimization is subsequently adopted as the solver for the resultant optimization problem. Besides, we suggest an approach to automatically update the penalty parameter of the l(0)-norm term. In addition, we analyze the computational complexity and the steady-state convergence of our algorithm. Experimental results on synthetic and temperature data exhibit the superiority of the developed method over state-of-the-art algorithms in impulsive noise environments in terms of recovery accuracy and convergence speed.
-
单位北京科技大学; 清华大学