Three-terminal Weyl complex with double surface arcs in a cubic lattice

作者:Huang, Zhenqiao; Chen, Zhongjia; Zheng, Baobing; Xu, Hu*
来源:npj Computational Materials, 2020, 6(1): 87.
DOI:10.1038/s41524-020-00354-y

摘要

Exploring unconventional topological quasiparticles and their associated exotic physical properties has become a hot topic in condensed matter physics, thus stimulating extensive interest in recent years. Here, in contrast to the double-Weyl phonons (the topological chiral charge +2) in the trigonal and hexagonal crystal systems, we propose that the unconventional double-Weyl without counterparts in high-energy physics can emerge in the phonons of cubic structures, i.e., SrSi2. Employing a two-band k . p Hamiltonian, we prove that the quadratic double-Weyl nodes are protected by the fourfold screw rotational symmetry C-4. Strikingly, we find that the surface arcs are terminated with the Weyl nodes that possess unequal topological charges with opposite sign (i.e., +2 and -1), leading to unique three-terminal Weyl complex (one quadratic double-Weyl and two linear single-Weyl) with double surface arcs in SrSi2. In addition, we apply a uniaxial tensile strain along z-axis to examine the evolution of the three-terminal Weyl complex when the corresponding symmetries are broken. Our work not only provides an ideal candidate for the realization of the quadratic double-Weyl and the corresponding unique surface arc states, but also broadens the understanding of topological Weyl physics.