电力负荷模型参数辨识的混合优化算法
中国知网
河海大学
摘要
模拟进化类算法具有全局寻优特性但计算时间过长,而梯度类算法具有很高的局部搜索效率但容易陷入局部最优点。基于模拟进化类算法和梯度类算法的优点提出一种混合优化算法,即以蚁群算法起步,经过一定次数的迭代后切换为梯度算法。提出目标值下降准则和区间收缩准则两种切换算法策略,并且进行对比。针对电力负荷参数辨识,通过仿真算例和实际应用进行测试。结果表明,在保证相同精度的前提下混合优化算法大大提高了计算效率。
关键词
参数辨识 蚁群算法 梯度类算法 负荷建模 parameter identification ant colony algorithm gradient-based method load modeling
