Size-Independent Transmembrane Transporting of Single Tetrahedral DNA Nanostructures.

Authors:Chen, Xi; Tian, Falin; Li, Min; Xu, Haijiao; Cai, Mingjun; Li, Qian; Zuo, Xiaolei; Wang, Hongda; Shi, Xinghua; Fan, Chunhai; Baigude, Huricha; Shan, Yuping
Source:Glob Chall, 2020, 4(3): 1900075.
DOI:10.1002/gch2.201900075

Summary

DNA nanostructures have attracted considerable attention as drug delivery carriers. However, the transmembrane kinetics of DNA nanostructures remains less explored. Herein, the dynamic process of transporting single tetrahedral DNA nanostructures (TDNs) is monitored in real time using a force-tracing technique based on atomic force microscopy. The results show that transporting single TDNs into living HeLa cells need approximately 53 pN force and approximately 25 ms duration with the average speed of approximately 0.6 microm s(-1). Interestingly, the dynamic parameters are irrelevant to the size of TDNs, while the larger TDNs rotated slightly during the transporting process. Meanwhile, both the results from single-molecule force tracing and ensemble fluorescence imaging demonstrate that the different size TDNs transmembrane transporting depends on caveolin-mediated endocytosis.

Full-Text