摘要

为提高建筑结构智能控制的控制精度及稳定性,在长短时记忆(LSTM)网络理论基础上,提出一种基于深度学习的智能控制算法.通过构建深度学习框架,设计LSTM智能控制器,并将其性能测试结果与反向传播(BP)和径向基函数(RBF)神经网络控制器进行对比.以Benchmark模型为对象,分析了不同外部激励工况下LSTM智能控制器的泛化能力,并提出了基于结构响应的H_2范数评价指标.结果表明:BP和RBF神经网络框架的预测结果相比LSTM框架可能发生局部最优现象,且收敛精度较低;原输入工况下,LSTM控制器的误差为3.30×10~(-4),控制效果最高达65.0%;变激励工况下,LSTM控制器的响应峰值及...

  • 单位
    武汉理工大学

全文