Summary
Potassium-ion energy-storage devices have established themselves as the most important candidates for nextgeneration energy-storage devices in the coming future. Recently, inorganic electrode materials have riveted ever-increasing interest due to large theoretical capacity, rich sources, low price and environmental friendly advantages. However, the electrode materials of potassium-containing devices have been suffering low theoretical capacity, poor rate performance and short lifespan due to integration effects of seriously electrochemical pulverization and slow kinetics. In this timely review, we will focus on the latest progress of potassium ion energy storage devices based on beyond-carbon materials, referring to the synthesis of materials and the construction of microstructure, material component-oriented electrochemical performance, energy storage mechanism discussion, newfangled device assembly and key components. The key materials and novel theories are reviewed, and some personal viewpoints have been proposed, targeting providing some inductive opinions.