Summary
Organic solar cells (OSCs) with visible transparency and vivid colors are promising for deployment in building-integrated photovoltaics (BIPVs), yet significant challenges remain to be addressed for not only balancing the trade-off between the photovoltaic and optical properties but also controlling the bandpass of visible transmittance for the coloration of semitransparent OSCs (ST-OSCs). Herein ST-OSCs with vivid colors are successfully developed by employing one fixed active blend in the rationally designed device layout with a high-quality Fabry-Perot electrode. With the assistance of optical simulation, vividly colorful ST-OSCs have been obtained with power conversion efficiency of >14% and maximum transmittance up to 31%. Overall, this study provides new access to OSCs with promising features as BIPVs.
- Institution