通过拉普拉斯变换,把一阶线性常系数微分方程组化为代数方程组,再求出代数方程组的解,此代数方程组的解是含有孤立奇点的复变函数,这些孤立奇点实际上是系数矩阵的特征根。对代数方程组的解与指数函数的乘积施行拉普拉斯逆变换,就得到原微分方程组的解。