ScholarMate
客服热线:400-1616-289

MS2-GNN: Exploring GNN-Based Multimodal Fusion Network for Depression Detection

Chen, Tao; Hong, Richang*; Guo, Yanrong; Hao, Shijie; Hu, Bin
Science Citation Index Expanded
兰州大学

摘要

Major depressive disorder (MDD) is one of the most common and severe mental illnesses, posing a huge burden on society and families. Recently, some multimodal methods have been proposed to learn a multimodal embedding for MDD detection and achieved promising performance. However, these methods ignore the heterogeneity/homogeneity among various modalities. Besides, earlier attempts ignore interclass separability and intraclass compactness. Inspired by the above observations, we propose a graph neural network (GNN)-based multimodal fusion strategy named modal-shared modal-specific GNN, which investigates the heterogeneity/homogeneity among various psychophysiological modalities as well as explores the potential relationship between subjects. Specifically, we develop a modal-shared and modal-specific GNN architecture to extract the inter/intramodal characteristics. Furthermore, a reconstruction network is employed to ensure fidelity within the individual modality. Moreover, we impose an attention mechanism on various embeddings to obtain a multimodal compact representation for the subsequent MDD detection task. We conduct extensive experiments on two public depression datasets and the favorable results demonstrate the effectiveness of the proposed algorithm.

关键词

Task analysis Feature extraction Semantics Depression Graph neural networks Electroencephalography Data mining Depression detection graph neural network (GNN) multimodal fusion