基于向量语义相似度的改进K-Means算法
中国知网
福州大学
摘要
针对传统的K-Means算法的不足,以及其在文本聚类中存在的局限性,提出了一种基于网页向量语义相似度的改进K-Means算法。新算法通过向量语义相似度的计算自动确定初始聚类中心,在聚类过程中,达到语义相似度阈值的网页才使用K-Means算法进行聚类。通过实验证明,新算法很好地克服了传统K-Means算法随机选取聚类中心以及无法处理语义信息的问题,提高了聚类的质量。
关键词
K-Means 语义相似度 向量空间模型 聚类 K-Means semantic similarity VSM clustering
