摘要
Environmental heat-to-electric energy conversion presents a promising solution for powering sensors in wearable and portable devices. However, the availability of near-room temperature thermoelectric (TE) materials is highly limited, posing a significant challenge in this field. Bi2Se3, as a room-temperature TE material, has attracted much attention. Here, we demonstrate a large-scale synthesis of Bi2Se3 nanoflakes used for the microflexible TE generator. A high-performance micro-TE generator module, utilizing a flexible printed circuit, has been designed and fabricated through the process of screen printing. The TE generator configuration comprises five pairs of PN TE legs. The p-type TE leg utilizes commercially available Sb2Te3 powder, while the n-type TE leg employs Bi2Se3 nanoflakes synthesized in this study. For comparative purposes, we also incorporate commercially available Bi2Se3 powder as an alternative n-type TE leg. The optimal performance of the single-layer microflexible TE generator, employing Bi2Se3 nanoflakes as the active material, is achieved when operating at a temperature differential of 109.5 K, the open-circuit voltage (V-OC) is 0.11 V, the short circuit current (I-SC) is 0.34 mA, and the maximum output power (P-MAX) is 9.5 & mu;W, much higher than the generator consisting of commercial Bi2Se3 powder, which is expected to provide an energy supply for flexible electronic devices.
-
单位y; 郑州大学