EMTM: A Method for Experts Mining in Micro-Blog with Topic-Level

作者:Zhang Lamei; Huang Weijing; Chen Wei; Wang Tengjiao; Lei Kai
来源:计算机研究与发展, 2015, 52(11).
DOI:10.7544/issn1000-1239.2015.20148133

摘要

目前,微博已成为人们获取信息、分享信息的最流行平台之一.经过长期的发展积累,微博中聚集了很多具有权威专业知识背景的专家,挖掘微博中与主题相关的专家有利于进一步地用户推荐、微博舆情分析等工作.在微博中,与某个主题相关的专家是指因具有可靠的与此主题相关的专业知识或技能而在此主题下具有高影响力的用户,挖掘高影响力的用户可以通过分析微博的转发数据来进行,然而由于微博中用户的转发行为分为"主题相关转发"和"跟随转发"2种,因此,因被转发概率高而具有高影响力的用户不一定是专家.EMTM(experts mining topic model)是一种基于主题模型的概率生成模型,通过区分微博用户的不同转发行为来挖掘微博中与主题相关的专家.模型采用Gibbs采样进行推理求解.在真实的新浪微博数据集上的对比实验表明EMTM能够有效地挖掘微博中与主题相关的专家.

  • 单位
    北京大学

全文