摘要

针对噪声环境下语音识别系统性能下降的问题,提出一种基于语音时频相关性的Mel特征矢量聚类补偿算法。该算法首先实现掩码估计,利用纯净语音信号时域和频域的相关性,实现了时频块的有效划分和基于时频块的语音特征聚类。在此基础上,对带噪语音的Mel语谱进行特征补偿。采用HTK工具和TIDIGITS数据库加入不同类别噪声的语音测试结果表明:该算法在不同信噪比条件下,获得了较基于频域相关性聚类特征补偿算法更好的性能。

  • 单位
    北京大学