摘要
Industrial wastewater contains excessive micro insoluble solids (MIS) that probably cause environmental pollutions. Near-infrared (NIR) spectroscopy is an advanced technology for rapid detection of the complex targets in wastewater. An Internet of Things (IoT) platform would support intelligent application of the NIR technologies. The studies of intelligent chemometric methods mainly contribute to improve the NIR calibration model based on the IoT platform. With the development of artificial intelligence, the backward interval and synergy interval techniques were proposed in combination use with the least square support vector machine (LSSVM) method, for adaptive selection of the informative spectral wavelength variables. The radial basis RBF) kernel is applied for nonlinear mapping. The regulation parameter and the kernel width are fused together for smart optimization. In the design for waveband autofittings, the total of digital wavelengths in the full scanning range was split into 43 equivalent subintervals, and then, the back interval LSSVM (biLSSVM) and the synergy interval LSSVM (siLSSVM) models were both established for the improvement of prediction results based on the adaptive selection of quasidiscrete variable combination. In comparison with some common linear and nonlinear models, the best training model was acquired with the siLSSVM method while the best testing model was obtained with biLSSVM. The intelligent optimization of model parameters indicated that the proposed biLSSVM and siLSSVM deep learning methodologies are feasible to improve the model prediction results in rapid determination of the wastewater MIS content by the IoT-based NIR technology. The machine learning framework is prospectively applied to the fast assessment of the environmental risk of industrial pollutions and water safety.
-
单位仲恺农业工程学院; 桂林理工大学