ScholarMate
客服热线:400-1616-289

Wear behavior of Zn-38Al-3.5Cu-1.2Mg/SiCp composite under different stabilization treatments

Liu, Sheng; Yuan, Qing*; Sima, Yutong; Liu, Chenxi; Han, Fang; Qiao, Wenwei
Science Citation Index Expanded
-

摘要

A Zn-38Al-3.5Cu-1.2Mg composite reinforced with nano-SiCp was fabricated via stirring-assisted ultrasonic vibration. To improve the abrasive resistance of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite, several stabilization treatments with distinct solid solutions and aging temperatures were designed. The results indicated that the optimal stabilization treatment for the Zn-38Al-3.5Cu-1.2Mg/SiCp composite comprised solution treatment at 380 degrees C for 6 h and aging at 170 degrees C for 48 h. The stabilization treatment led to the formation of dispersive and homogeneous nano-SiCp. During the friction wear condition, the nano-SiCp limited the microstructure evolution from the hard alpha(Al,Zn) phase to the soft beta(Al,Zn) phase. Moreover, the increased amount of nano-SiCp improved the grain dimension and contributed to the composite abrasive resistance. Furthermore, the stabilization treatment suppressed the crack initiation and propagation in the friction wear process, thereby improving the abrasive resistance of the Zn-38Al-3.5Cu-1.2Mg/SiCp composite.

关键词

composite ultrasonic vibration stabilization abrasive resistance microstructure evolution