Study of the Interfacial Oxidation of InP Quantum Dots Synthesized from Tris(dimethylamino)phosphine
摘要
InP quantum dots (QDs) are the most competitive in terms of environmentally friendly QDs. However, the synthesis of InP QDs requires breakthroughs in low-cost and safe phosphorus precursors such as tri(dimethylamino)phosphine [(DMA)3P]. It is found that even if the oxygen is completely avoided, there are still oxidation state defects at the core/shell interface of InP QDs. Herein, the record-breaking (DMA)3P-based red InP QDs were synthesized with the assist of HF processing to eliminate the InPOx defect and improve the fluorescence efficiency. The maximum photoluminescence quantum yield was 97.7%, which is the highest of the red InP QDs synthesized by the aminophosphine. The external quantum efficiency and brightness of the QD light-emitting diode device are also improved accordingly from 0.6% and 1276 cd center dot m-2 to 3.5% and 2355 cd center dot m-2, respectively.
