摘要
The unique cyclic thermal input in laser additive manufacturing (LAM) induced by layerwise deposition manner has been one of the hot research topics. This technique has shed light on the potential of using intrinsic heat treatment (IHT) to tune microstructures and enhance the mechanical performance of materials. Therefore, this article elaborates on cyclic thermal input in LAM. Herein, the influence of process parameters, deposition direction, interlayer delay time, substrate preheating, and laser remelting on cyclic thermal input was reviewed in detail. One of our key findings was that the cyclic thermal input can significantly affect the microstructures such as grain orientation, phase composition, and second phase precipitation, which in turn affects the mechanical properties of materials. The IHT effect generated by cyclic thermal input provides an opportunity for material performance enhancement and new materials development. Hence, the understanding of internal relationships among composition-process-IHT effect microstructures -mechanical properties is critical. This is not only essential for material performance enhancement through tailoring of IHT effect but also provides enlightenment for the research and development of LAM -specific new materials based on IHT effect.