摘要

目的针对基于压缩感知(CS)的逆合成孔径雷达(ISAR)成像方法的成像质量和应用一直受到目标场景稀疏性好坏和迭代重建耗时长限制的问题,提出一种基于交替方向乘子法网络(ADMMN)的ISAR成像方法。方法根据交替方向乘子法(ADMM)求解稀疏假设下CS ISAR成像模型时采取的分裂变量的策略,将凸优化迭代求解过程映射到一个多级的深度神经网络,构建出ADMMN。ADMMN通过训练学习欠采样的ISAR测量数据与高质量目标图像之间的映射关系,借此实现ISAR欠采样数据成像。结果实验采用仿真卫星数据和实测飞机数据,两种数据的采样率分别为25%和10%。实验结果表明,相较于典型的CS ISAR正交匹配追踪...

  • 单位
    南京航空航天大学; 电子信息工程学院