The formation pathways of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from pyrolysis of polybrominated diphenyl ethers (PBDEs): Effects of bromination arrangement and level

作者:Liang, Jiahao; Lu, Guining*; Wang, Rui; Tang, Ting; Huang, Kaibo; Jiang, Fengyu; Yu, Wenjie; Tao, Xueqin; Yin, Hua; Dang, Zhi
来源:Journal of Hazardous Materials, 2020, 399: 123004.
DOI:10.1016/j.jhazmat.2020.123004

摘要

This study presents comprehensive formation pathways of polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) from the pyrolysis of polybrominated diphenyl ethers (PBDEs). A total of 23 PBDE congeners, from mono- to hepta- brominated, were selected to conduct the pyrolysis experiments. The results suggest that nPBDEs (where n means the number of bromine substituents) can transform into n/(n-1) PBDFs and (n-1)/(n-2) PBDDs as long as they meet certain structural requirement. One single PBDE congener can only transform (if possible) specific PBDF or PBDD based on their specific brominated arrangement by direct/oxygen bridge connecting the two ortho-carbon atoms. Among all selected BDEs, we found that only 2,2',4,4',5,5'-hexaBDE (BDE-153) can transform into 2,3,7,8-tetraBDD, which is most toxic congener among these group of compounds. When the degree of bromination increased, the yield of polybromobenzene increased, while that of the PBDD/Fs decreased, suggesting that the higher PBDEs favors to break the ether bond to form polybromobenzene, while the lower PBDEs favor transformation into PBDD/Fs. We proposed that the results in this study greatly improved our understanding on the transformation of PBDD/Fs from PBDEs in the pyrolysis process.

  • 单位
    仲恺农业工程学院