Extremely High Brightness from Polymer-Encapsulated Quantum Dots for Two-photon Cellular and Deep-tissue Imaging

作者:Fan Yanyan; Liu Helin; Han Rongcheng; Huang Lu; Shi Hao; Sha Yinlin; Jiang Yuqiang*
来源:Scientific Reports, 2015, 5: 9908.
DOI:10.1038/srep09908

摘要

Materials possessing high two photon absorption (TPA) are highly desirable for a range of fields, such as three-dimensional data storage, TP microscopy (TPM) and photodynamic therapy (PDT). Specifically, for TPM, high TP excitation (TPE) brightness (sigma x phi, where sigma is TPA cross-sections and phi is fluorescence quantum yield), excellent photostability and minimal cytotoxicity are highly desirable. However, when TPA materials are transferred to aqueous media through molecule engineering or nanoparticle formulation, they usually suffer from the severely decrease of quantum yield (QY). Here, we report a convenient and efficient method for preparing polymer-encapsulated quantum dots (P-QD). Interestingly, the QY was considerably enhanced from original 0.33 (QDs in THF) to 0.84 (P-QD in water). This dramatic enhancement in QY is mainly from the efficiently blocking nonradiative decay pathway from the surface trap states, according to the fluorescence decay lifetimes analysis. The P-QD exhibits extremely high brightness (sigma x phi up to 6.2 x 106 GM), high photostability, excellent colloidal stability and minimal cytotoxicity. High quality cellular TP imaging with high signal-to-background ratio (> 100) and tissue imaging with a penetration depth of 2200 mu m have been achieved with P-QD as probe.

  • 单位
    北京大学; 中国科学院; 华南师范大学; x