Summary
Preparing halogen-free and efficient bio-flame retardants by recycling industrial solid waste is crucial for creating an environmentally friendly human settlement. Herein, beta-cyclodextrin(beta-CD) and dopamine(DA) are employed to chelate zinc ions (beta-CD@Zn@DA) involved in cenospheres-based geopolymeric coating for further flame-retarding plywood. The results show that an appropriate dosage of beta-CD (1.2 g, 1.00 wt%) improves the flame retardancy of the geopolymeric coating, and the peak heat release rate decreases from 107.17 kW.m(-2) to 66.04 kW.m(-2), the flame retardancy index increases from 1.00 to 1.41. Meanwhile, due to hydrogen bonding cross-linking and chelation of zinc ions, the coating is transformed into a dense and non-flammable ceramic-like blocking layer during firing to prevent heat or mass transfer. Furthermore, the pyrolysis kinetics identify that the Z.-L.-T. three-dimensional diffusion-reaction model governs the coatings' pyrolysis, and an appropriate beta-CD makes the pyrolysis E-alpha climb from 186.08 to 237.41 kJ.mol(-1) at 980 similar to 740 degrees C, corresponding to the resilient residues for blocking heat and fire. Therefore, in-situ polymerized zinc ions, chelated beta-CD, and DA for facilely designing Si-C-N hybrid flame-retarding coating is explored, promoting the recycling of industrial solid waste and the development of more sustainable building materials.