Summary
Data collection with mobile elements can greatly improve the load balance degree and accordingly prolong the longevity for wireless sensor networks (WSNs). In this pattern, a mobile sink generally traverses the sensing field periodically and collect data from multiple Anchor Points (APs) which constitute a traveling tour. However, due to long-distance traveling, this easily causes large latency of data delivery. In this paper, we propose a path planning strategy of mobile data collection, called the Dual Approximation of Anchor Points (DAAP), which aims to achieve full connectivity for partitioned WSNs and construct a shorter path. DAAP is novel in two aspects. On the one hand, it is especially designed for disconnected WSNs where sensor nodes are scattered in multiple isolated segments. On the other hand, it has the least calculational complexity compared with other existing works. DAAP is formulated as a location approximation problem and then solved by a greedy location selection mechanism, which follows two corresponding principles. On the one hand, the APs of periphery segments must be as near the network center as possible. On the other hand, the APs of other isolated segments must be as close to the current path as possible. Finally, experimental results confirm that DAAP outperforms existing works in delay-tough applications.
-
Institution天津大学