Summary
依据洪灾风险概念模型,从触发因子、孕灾环境和承灾体3方面选取江西省的12个洪灾风险指标,采用k近邻、随机森林、Ada Boost 3种机器学习算法构建洪灾风险评价模型。利用精度、Kappa系数、ROC曲线(AUC值)3种定量评估指标评价洪灾风险模型,基于随机森林和Boruta特征提取算法共同分析指标重要性,最后对比3种模型绘制的江西省山洪灾害风险分区图并分析山洪灾害分布特征。结果表明:(1) Ada Boost模型的精度、Kappa系数和AUC值的平均值为别为0.902、0.870和0.826,精度和Kappa系数略优于随机森林,AUC值与随机森林相当,而k近邻模型的3种性能指标均低于前2种算...
-
Institution河海大学