摘要

One key challenge in photocatalytic hydrogen production is how to construct high-performance photocatalyst. Covalent triazine framework (CTF) based polymers as photocatalysts show great application potential because of their good photocatalytic activity, high chemical stability, tunable electronic and optical properties, and easy synthesis process. In this paper, we designed the ternary Z-scheme heterojunction Au@TiO2-X%TrTh based on CTF polymer TrTh, TiO2 and Au nanoparticle, which exhibit higher photocatalytic hydrogen production rate compared with the corresponding binary heterojunction Au@TiO2 and TiO2-12%TrTh. The results of photocatalytic hydrogen production show that the optimized Au@TiO2-12%TrTh has a remarkable hydrogen production rate of 4288.54 mu mol g(-1) h(-1), which is about 312.3 times of Au@TiO2 and 9.1 times of the TiO2-12% TrTh. The enhanced hydrogen production activity of the ternary heterojunction comes from the local surface plasmonic resonance effect of Au nanoparticle, lower recombination efficiency of photogenerated electron-holes pairs and Z-scheme electron transfer pathway of Au@TiO2-12%TrTh. The work provides a new strategy for designing efficient and practical photocatalyst.

  • 单位
    南昌航空大学; y