摘要
目的稀疏角度CT具有加速数据采集和减少辐射剂量的优点。然而,由于采集信息的减少,使用传统滤波反投影算法(FBP)进行重建得到的图像中伴有严重的条形伪影和噪声。针对这一问题,本文提出基于多尺度小波残差网络(MWResNet)对稀疏角度CT图像进行恢复。方法本网络中将小波网络与残差块相结合,用以增强网络对图像特征的提取能力和加快网络训练效率。实验中使用真实的螺旋几何CT图像数据"Low-dose CT Grand Challenge"数据集训练网络。通过观察图像表征和计算定量参数的方法对结果进行评估,并与其他现有网络进行比较,包括图像恢复迭代残差卷积网络(IRLNet),残差编码解码卷积神经网络(...
-
单位南方医科大学