摘要
Lithium-oxygen batteries with ultrahigh energy density have received considerable attention as of the future energy storage technologies. The development of effective electrocatalysts and a corresponding working mechanism during cycling are critically important for lithium-oxygen batteries. Here, a single cobalt atom electrocatalyst is synthesized for lithium-oxygen batteries by a polymer encapsulation strategy. The isolated moieties of single atom catalysts can effectively regulate the distribution of active sites to form micrometre-sized flower-like lithium peroxide and promote the decomposition of lithium peroxide by a one-electron pathway. The battery with single cobalt atoms can operate with high round-trip efficiency (86.2%) and long-term stability (218 days), which is superior to a commercial 5wt% platinum/carbon catalyst. We reveal that the synergy between a single atom and the support endows the catalyst with excellent stability and durability. The promising results provide insights into the design of highly efficient catalysts for lithium-oxygen batteries and greatly expand the scope of future investigation. Li-O-2 batteries represent one of the promising paths toward high energy density battery systems. Here the authors synthesize single atom Co electrocatalysts to regulate the formation and decomposition of the major discharge product Li2O2, realizing high round-trip efficiency and stability in a Li-O-2 cell.
-
单位吉林大学; 中国科学院; 中国科学院长春应用化学研究所; 郑州大学