摘要

传统的K-均值算法依赖于初始聚类中心的选取,使聚类结果只能收敛于局部最优解;差分演化算法是一类利用随机偏差扰动产生新个体的方式获得非常好的收敛性的结果。为了克服K-均值聚类算法的上述缺点,该文提出基于差分演化的K-均值聚类算法,新算法结合K-均值算法的高效性和差分演化算法的全局优化能力,较好地解决了聚类中心优化问题。实验证明,此算法能够有效改善聚类质量。以肝功能疾病为例对新方法在医学中的应用进行了探讨。

  • 单位
    广东药学院