摘要
Laser with high spectral purity plays a crucial role in high-precision optical metrology and coherent communication. Thanks to the rapid development of laser frequency stabilization, the laser phase noise can be remarkably compensated, allowing its ultra-narrow linewidth subject to mostly quantum limit. Nevertheless, the accurate characterization of phase noise statistics and its linewidth of a highly coherent laser remains ambiguous and challenging. Here, we present an approach capable of revealing delay-time-resolved phase noise statistics of a coherent laser based on coherent optical time domain reflectometry (COTDR), in which distributed Rayleigh scattering along a delay fiber essentially allows a time-of-flight mapping of a heterodyne beating signal associated with delay-time-dependent phase information from a single laser source. Ultimately, this novel technique facilitates precise measurement of ultra-narrow laser linewidth by exploiting its delay-time-resolved phase jitter statistics of random fiber laser with pump lasers of various linewidths, confirmed with the analytical modeling and numerical simulations.
-
单位5; 上海大学; 1