Summary
塔里木河流域的胡杨林是该荒漠区域典型的森林资源,胡杨树冠大小和株数信息对塔里木河流域森林资源监测、生态保护和恢复具有重要意义。由于该流域乔灌草植物群落分布的复杂性,传统方法很难实现胡杨树冠的精准分割和大范围的株数提取。以塔里木河中游胡杨林为研究区,选取几块典型胡杨林区域,提出集成深度学习和分水岭分割的处理方法,对密集胡杨树冠的精准分割和单株胡杨的提取进行了深入探讨。首先,将无人机影像(空间分辨率0.16 m)无缝拼接生成正射影像;采用U-Net卷积神经网络对胡杨树冠覆盖区域进行精准分割;在U-Net模型分割的基础上使用标记分水岭方法对密集胡杨树冠进行自动再分割和单株计数,计算出所选研究区的胡杨...
-
Institution中国科学院; 中国科学院研究生院