ScholarMate
客服热线:400-1616-289

Effect of Light and Heavy Rare Earth Doping on the Physical Structure of Bi2O2CO3 and Their Performance in Photocatalytic Degradation of Dimethyl Phthalate

He, Qingyun; Liu, Xingqiang; Li, Feng; Li, Fang; Tao, Leiming; Yu, Changlin*
Science Citation Index Expanded
茂名学院; 厦门大学

摘要

In order to solve the problem of environmental health hazards caused by phthalate esters, a series of pure Bi2O2CO3 and light (La, Ce, Pr, Nd, Sm and Eu) and heavy (Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu) rare earth-doped Bi2O2CO3 samples were prepared by hydrothermal method. The crystalline phase composition and physical structure of the samples calcined at 300 degrees C were studied, and we found that the rare earth ion doping promoted the transformation of Bi2O2CO3 to beta-Bi2O3 crystalline phase, thus obtaining a mixed crystal phase photocatalyst constituted by rare earth-ion-doped Bi2O2CO3/beta-Bi2O3. The Bi2O3/Bi2O2CO3 heterostructure had a lower band gap and more efficient charge transfer. The fabricated samples were applied to the photocatalytic degradation of dimethyl phthalate (DMP) under a 300 W tungsten lamp, and it was found that the rare earth ion doping enhanced the photocatalytic degradation activity of DMP, in which the heavy rare earth of Er-doped sample reached 78% degradation for DMP at 150 min of light illumination. In addition, the doping of rare earths resulted in a larger specific surface area and a stronger absorption of visible light. At the same time, the formation of Bi2O2CO3/beta-Bi2O3 heterogeneous junction enhanced the separation efficiency of photogenerated electrons and holes.

关键词

rare earth doping Bi2O2CO3 photocatalysis dimethyl phthalate