摘要

基于误差反向传播(Back Propagation,BP)神经网络建立了适应能力较强的信号交叉口进口车道平峰时的交通延误网络模型,并利用邯郸市某信号交叉口进口车道的平峰小时交通延误的数据,对该BP神经网络预测模型进行训练和测试.比较分析预测结果和实际数据,结果表明该BP神经网络对于交叉口进口车道的交通延误预测结果可靠有效.此外,在交通情况更加复杂的信号交叉口或者时间段,以该模型为基础可以建立更加可靠的预测信号交叉口进口车道交通延误模型.

  • 单位
    东南大学; 河海大学